Prometheus anomaly detection

With an increase in the number of applications being deployed on Red Hat OpenShift, there is a strong need for application monitoring. A number of these applications are monitored via Prometheus metrics, resulting in an accumulation of a large number of time-series metrics stored in a TSDB (time series database). Some of these metrics can have anomalous values, which may indicate issues in the application, but it is difficult to identify them manually. To address this issue, we came up with an AI-based approach of training a machine-learning model on these metrics for detecting anomalies.

Continue reading “Prometheus anomaly detection”